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Abstract

Recent progress in simulation methodologies and high-performance parallel computers have made it is possible to

perform detailed simulations of multidimensional reacting flow phenomena using comprehensive kinetics mechanisms.

As simulations become larger and more complex, it becomes increasingly difficult to extract useful information from the

numerical solution, particularly regarding the interactions of the chemical reaction and diffusion processes. In this

paper we present a new diagnostic tool for analysis of numerical simulations of reacting flow. Our approach is based

on recasting an Eulerian flow solution in a Lagrangian frame. Unlike a conventional Lagrangian viewpoint that follows

the evolution of a volume of the fluid, we instead follow specific chemical elements, e.g. carbon, nitrogen, etc., as they

move through the system. From this perspective an ‘‘atom’’ is part of some molecule of a species that is transported

through the domain by advection and diffusion. Reactions cause the atom to shift from one chemical host species to

another and the subsequent transport of the atom is given by the movement of the new species. We represent these proc-

esses using a stochastic particle formulation that treats advection deterministically and models diffusion and chemistry

as stochastic processes. In this paper, we discuss the numerical issues in detail and demonstrate that an ensemble of

stochastic trajectories can accurately capture key features of the continuum solution. The capabilities of this diagnostic

are then demonstrated by applications to study the modulation of carbon chemistry during a vortex–flame interaction,

and the role of cyano chemistry in NOx production for a steady diffusion flame.
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1. Introduction

Advances in simulation methodologies and high-performance computers make feasible detailed simula-

tions ofmultidimensional reacting flowphenomena using comprehensive reaction sets [21]. For steady flames,

Smooke and co-workers [6,10,26,32–35] have performed numerous studies of laminar methane diffusion
flames with detailed kinetics. Mechanisms that include detailed nitrogen chemistry were used by Bell and

co-workers [4,19,36] to study NOx chemistry in ammonia-enriched methane flames. For transient laminar

flames, Hilka et al. [22], Najm et al. [27–29], and Bell et al. [2], studied vortex–flame interactions with detailed

methane chemistry. For premixed flames in fields of two-dimensional (2D) isotropic turbulence, Baum et al.

[1] studied turbulence-flame interactions with detailed hydrogen chemistry, Haworth et al. [20] studied the ef-

fects of mixture inhomogeneity with a detailed propane mechanism, Chen and Im [7] considered local flame

speed using detailedmethane chemistry, andEchekki andChen [9] studied autoignitionwith a detailed hydro-

gen mechanism. Vervisch et al. [42] studied a 2D turbulent premixed V-flame with detailed hydrogen chem-
istry. For 3D simulations with detailed hydrogen chemistry, Tanahashi et al. [37,38] examined turbulent

premixed flame sheets, Mizobuchi et al. [25] determined the structure of turbulent jet diffusion flames, and

Tsuboi et al. [41] predicted diagonal structures in turbulent detonation fronts. For 3D simulations with de-

tailed methane chemistry, Bell et al. [3,5] studied turbulent premixed flame sheets and laboratory-scale turbu-

lent V-flames. Complex reaction systems are also used tomodel nuclear burning in simulations of supernovae:

for example see Timmes and Woosley [39], Timmes et al. [40] and Fryxell et al. [12].

The scientific utility of these simulations depends on the ability to analyze the implications of what is

computed and to draw conclusions about the underlying chemical kinetics [13]. As the simulations grow
in complexity this task becomes increasingly difficult. For example, one-dimensional calculations show

[18] the relationship between preheat and heat-release zones in premixed laminar flames, but for turbulent

flames probability distributions are needed just to tabulate the range of chemical states. The close coupling

between advection, diffusion and chemical kinetics in time-dependent turbulent systems makes analysis dif-

ficult even in the simplest settings.

In this paper, we develop a diagnostic tool for analyzing multi-component, multi-dimensional reacting

flow problems with detailed kinetics. We intend the analysis to be undertaken after a continuum calculation

has been performed. Thus we assume the distribution of all species as well as the temperature and velocity
fields over all space and time are known. Our analysis procedure then interrogates the solution by following

‘‘particles’’ that track one of the specific kinds of atoms in the chemical species comprising the fluid. For

example, to understand basic flame chemistry in a hydrocarbon flame we might track the behavior of car-

bon atoms; to study NOx formation we might track nitrogen atoms. We not only follow the particles as

they traverse paths in the flow (analogous to tracing the evolution of passive particles in a flow field),

we must also account for the effects of differential diffusion and chemical reactions. We approximate diffu-

sion as a random walk whose probability of making a step is determined by the local diffusivity of the host

species. Chemical reactions, which transfer the traced atom from one species to another, are approximated
as a Markov process whose transitions are determined from the elementary steps of the reaction mecha-

nism. Statistics from tracing an ensemble of such stochastic particles are collected and used to analyze

the interplay of convection, diffusion, and reaction in the flame.

After introducing the method in the following section, we will demonstrate the utility of this new ap-

proach for several prototype problems. First, we will relate stochastically obtained diagnostics to more con-

ventional characteristics of the flame derivable from the continuum solution. In doing so, we can quantify

statistical requirements and validate the diagnostics. In addition, we present two more interesting applica-

tions of the diagnostics: the modulation of carbon chemistry in a premixed methane flame interacting with a
vortex, and the role of cyano chemistry on NOx formation in a methane diffusion flame. In each case we

demonstrate that the stochastic particle diagnostics allow us to pose complex analysis questions in a

straightforward manner and provide interesting insights into the flow.
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2. Diagnostic algorithm

The basic idea for the diagnostic algorithm is to monitor the path of a tagged atom (or collection of

atoms) through the flow domain, including the history of which molecules transport them. The data to

be analyzed includes the distribution of all species in the continuum solution, as well as the temperature
and velocity fields. This data is obtained through numerical simulation of the reacting Navier–Stokes equa-

tions. Our analysis is independent of whether the solution is obtained with a compressible or low Mach

number formulation, but does depend on the details of the transport and kinetics models employed. To

focus the exposition, we assume that the numerical simulations that we wish to analyze (and, consequently

the diagnostic algorithm as well) are based on a mixture-averaged model for transport and a collection of

fundamental reactions specified as a CHEMKIN [24] compatible kinetics database. With these assump-

tions, the kth species satisfies the equation
oqY k

ot
þr � ðuqY Þ ¼ q

DY k

Dt
¼ r � qDkrY k þ qxk; ð1Þ
where Yk is the mass fraction, q is fluid density, u is advection velocity, and Dk and xk are the mixture-av-

eraged diffusion coefficient and chemical production rate, respectively. We note that it would be a simple

matter to tailor the analysis to other, similar, models as appropriate.
We are interested in following atoms of some specific element such as carbon or nitrogen as they prop-

agate through the system. We denote the atom we are tracking by A. For the chemical system being mode-

led there is a subset of the molecules, M1,M2,. . .,MK that contain atoms of the type A as one of their

constituents. At each time, the atom A is thus in one of the elements, Mk, which we denote by A 2 Mk.

If we specify a probability distribution that determines how A is initially dispersed throughout the system,

Eq. (1) prescribes the evolution of that distribution.

If we interpret the species equation from the perspective of an atom, A2Mk, we obtain a stochastic dif-

ferential equation for the fate of the particle in the flow field:
dxA ¼ uðxA; tÞdt þ dW kðtÞðxA; tÞ þ dRk:k0 ðxA; tÞ; ð2Þ
where the terms on the right hand side represent advection, diffusion and reaction. In particular, u(xA,t) is

the velocity obtained from the continuum solution, and dWk(t) represents a generalized Brownian motion

with properties chosen to model the diffusion of the Mk molecules. Finally, dRk:k 0 denotes a ‘‘scattering’’ of

A from Mk into the set Mk 0 as the result of reaction. After Mk reacts, the dynamics of the particle are deter-
mined by the motion of the k 0th species. We integrate Eq. (2) over a time interval, Dt, using a time-explicit

split approach that treats each term independently.

The first term in Eq. (2) corresponds to a standard particle tracing algorithm and requires no elabora-

tion. We want to represent diffusion as a random walk; however, rather than attempting to construct an

analytic form of the random walk to model species diffusion, we introduce a spatial scale Dx and a temporal

scale Dt and use a lattice model to approximate the random walk. In particular, we consider the standard

time-explicit one-dimensional centered discretization of the diffusion term in Eq. (1). At three adjacent lat-

tice points we have:
qY nþ1
k;j�1 ¼ qY n

k;j�1 þ
Dt
Dx2

ðqDÞnk;j�1
2
ðY n

k;j � Y n
k;j�1Þ � ðqDÞnk;j�3

2
ðY n

k;j�1 � Y n
k;j�2Þ

h i
;

qY nþ1
k;j ¼ qY n

k;j þ
Dt
Dx2

ðqDÞnk;jþ1
2
ðY n

k;jþ1 � Y n
k;jÞ � ðqDÞnk;j�1

2
ðY n

k;j � Y n
k;j�1Þ

h i
;

qY nþ1
k;jþ1 ¼ qY n

k;jþ1 þ
Dt
Dx2

ðqDÞnk;jþ3
2
ðY n

k;jþ2 � Y n
k;jþ1Þ � ðqDÞnk;jþ1

2
ðY n

k;jþ1 � Y n
k;jÞ

h i
:
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Here, the j-subscript represents a lattice location. Subscripts j ± 1 represents locations immediately to the

right or left, separated by a distance Dx. If we start with a mass, qYk at xj and time tn, then at tn + Dt,
the fraction pR ¼ DtðqDÞnk;jþ1

2
=Dx2 of that mass moves to the right a distance Dx, and the fraction

pL ¼ DtðqDÞnk;j�1
2
=Dx2 moves to the left. The remaining mass stays at its original location.

For Dt sufficiently small that pR + pL < 1, these expressions define a discrete probability distribution that
approximates the diffusion of molecules, Mk. The path xnA of a trace particle associated with a molecule Mk

at time tn over the time interval Dt, is computed according to the following prescription. We first perform an

advective update of the particle location to obtain x�A ¼ xnA þ Dtu. We then choose a random number

a 2 [0,1] and define the diffusion update as the random-walk step:
xnþ1
A ¼

x�A þ Dx if 06 a6 pR;

x�A � Dx if pR < a6 pR þ pL;

x�A if pR þ pL < a6 1:

8><
>:
For DtDmax/Dx
2 � 1 this lattice approximation provides sufficient accuracy that statistical sampling error

dominates errors arising from the lattice approximation. The generalization of this approach to two and

three space dimension is straightforward. Based on tests for model problems, we have estimated that setting
Dt as 10% of the local stability limit of the explicit diffusion scheme provides an suitable balance between

accuracy and efficiency.

Our approach to modeling the chemical reaction terms in Eq. (2) is based on a similar type of discrete

time approximation to the underlying stochastic process. To that end, we introduce a time interval Dtc over
which we wish to model the chemistry. We note that the chemical time scale depends on the particular mol-

ecule we are considering and its local environment. Thus, the computation of Dtc is based on local consid-

erations. If A 2 Mk at t
n, there are a collection of reactions, r1,. . .,rN, that transform Mk, along with other

reaction participants, into a new collection of molecules over the time interval, Dtc. As a result of this trans-
formation Mk is destroyed and A is transferred from a molecule of type Mk to one of type Mk 0. This

destruction of Mk is expressed at the continuum level as
d½Mk�
dt

¼ �
XN
n¼1

Rn; ð3Þ
where [Mk] is the molar concentration of Mk, and Rn is the rate of progress of reaction, rn, destroying mol-

ecules of type Mk. Reactions representing creation of Mk are not considered because these reactions do not

affect A. Assuming Dtc is sufficiently small, (3) can be approximated by
½Mk�nþ1 ¼ ½Mk�n 1� Dtc
XN
n¼1

Rn

,
½Mk�

 !
;

so we can define pn = DtcRn/[Mk] to be the probability that reaction rn transforms A from Mk to Mk 0 during

the time interval Dtc. We also define p0 ¼ ð1� Dtc
PN

n¼1Rn=½Mk�Þ > 0 as the probability that the moleculeMk

containing A does not react during the time interval.

The representation of the kinetics is constructed so that probabilities of reaction depend only on the cur-
rent state; thus, the probabilistic model for the transfer of A from molecule to molecule as a result of reac-

tions is a Markov process m. A simple graphical illustration of this type of process is shown in Fig. 1. As

with the diffusion, we specify Dtc as a fraction of the maximum stable explicit time step, namely, 10% of the

maximum value of Dtc for which p0 > 0. We note that the time scale associated with the reaction kinetics is

typically much smaller than the diffusion and advection time scales. Thus, we subcycle the chemistry as nec-

essary until we have modeled the process over the full interval Dt.
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There are several subtleties that must be addressed in construction of m to correctly represent the chem-

ical behavior and to satisfy the Markov property. Particular issues relate to: (i) fast, near equilibrium reac-

tions; (ii) detail of the behavior of specific reactions; (iii) molecules with multiple copies of the same atom.

These issues are discussed in Appendix A.

This completes the basic description of the algorithm. In summary, to analyze a particular feature of a

simulation, we identify the type of atom we want to follow, the initial molecule of which it is a constituent

and the region in space and time where we want to begin the trajectories. This data is used to initialize an

ensemble of particles that are evolved by the stochastic algorithm described above. Namely, we first identify
Dt for the transport calculation. We then compute the deterministic advection of the particle followed by

the random walk to represent diffusion. We then choose Dtc and advance the chemistry, subcycling as nec-

essary, until we reach Dt. For time dependent flows, we have approximated the data for a given time step as

piecewise constant over the length of the time step of the fluid dynamics algorithm; i.e., we assume the data

obtained from the fluid solution at time tn is valid until time tn + 1 which is the time at which the next fluid

time step is available. We adjust Dt for the stochastic particle algorithm so that the diagnostic algorithm

reaches tn + 1 exactly and we compute new properties to continue the evolution. We then interrogate the

collected trajectories to analyze the behavior of the flow.
Before illustrating the performance of the method we first make a couple of observations about the

method. At first examination it would appear that the computations are quite costly. However, most of

the required data can be precomputed, so that the actual particle integration is quite efficient. Also, since

each trajectory is independent, the method parallelizes very well. Exploiting these characteristics of the

method, we have been able to follow a several hundred thousand trajectories in just a few hours.

A second observation about this approach is a word of caution. With the stochastic description of the

algorithm it is tempting to try to relate the stochastic particles to a Boltzmann description of the fluid.

However, unlike a Boltzmann description we do not maintain velocity distribution for the particles. Thus,
our particles represent, at best, ‘‘pseudo-particles’’ whose velocities are averages of the Boltzmann velocity

description. Perhaps the most accurate description of an ensemble of stochastic trajectories is as a path

integral representation of an approximation to the continuum solution.
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3. Computational results

In this section we demonstrate the behavior of the method and illustrate the relationship between the

particle trajectories and the continuum solution. We consider two examples, premixed flames and laminar

diffusion flames. Both examples use detailed methane chemistry and a mixture model for diffusion. The
sample flames were computed using the low Mach number adaptive mesh refinement algorithm developed

by Day and Bell [8].

3.1. Steady premixed methane flame

In this section, we demonstrate the application of the stochastic particle algorithm to premixed flames.

We first apply the method to a steady premixed flame in order to validate the algorithm. The steady laminar

flame solution at fuel equivalence ratio / = 1.2 was computed with the PREMIX code [23] that is part of
CHEMKIN application suite using the supplied model for mixture-averaged diffusion. The GRI-Mech 3.0

[11] database was used for all kinetics, thermodynamic and transport parameters.

We map this one-dimensional solution onto a locally-refined two-dimensional domain with inflowing

reactants at the bottom and products exiting at the top by replicating the solution horizontally. We track

80,000 particles representing carbon atoms that are initially part of the CH4 molecules. The particles are

‘‘released’’ near the bottom of the domain and allowed to propagate upward through the system. Trajec-

tories for six sample particles are shown in Fig. 2. Since there is no horizontal advection, all lateral motion

results from the random walk algorithm describing diffusion. Red indicates the path taken in physical space
while the traced carbon atom resides in a CH4 molecule. The portion of the path alternating in color be-

tween blue and green represents the transfer the carbon atom between CO and CO2 in the region down-

stream of the flame. The flame, corresponding to the location of peak heat release, is at y = .02 m.

Reaction pathway diagrams are a standard directed-graph approach used to analyze reacting fluid sys-

tems. Nodes in these graphs represent chemical species, and edges represent transformation from species to
Fig. 2. Carbon trajectories for flat laminar premixed flame, / = 1.2.
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species by chemical reaction. To compile the analogous chemical behavior generated by the stochastic par-

ticles, we tabulate all of the chemical transformations taken in the Markov process representation of chem-

istry, coalesce all of the transformations representing different reactions that result in the same molecular

transformation and compute the net transformation for each molecular pathway. This data is represented
graphically for the evolution of carbon atoms in Fig. 3 along the with analogous diagram computed by inte-

grating the net chemical production rates obtained from PREMIX over the computational domain. In

these graphs, the thickness of the arrows is scaled by the relative strength of that pathway, normalized

to the CH4 ! CH3 pathway which is the dominant path for carbon chemistry in methane oxidation. A de-

tailed comparison of the data shows that the stochastic particle representation accurately captures the

chemical behavior of the flame with errors of less than 1%.

3.2. Vortex–flame interactions

The next example addresses the interaction of a vortex with a premixed flame. This configuration has

been studied computationally by a number of authors; see, for example, [2,28,29]. We begin with a flat pre-

mixed flame oriented normal to the inlet flow and superimpose a velocity field due to a periodic array of

counter-rotating vortex pairs with Gaussian cores 2.25 mm wide and centers 2.50 mm apart. These param-

eters produce a vortex pair that is similar in width and propagation speed to the vortex pair in described in

the V-flame experiment as realized by Nguyen and Paul [30] and Samaniego [31]. A schematic for the com-

putation is presented in Fig. 4. From symmetry considerations, we need only simulate one half of a period
of the problem. Here we take the right boundary to correspond to the vortex centerline. Reactants flow in

at the bottom, and combustion products exit through the top. For the conditions presented here, vortex

pair propagates upward with a self-induced velocity of �130 cm/s. We consider two equivalence ratios,

/ = 0.8 and 1.2. Our base computational domain is 1.2 cm wide, and 4.8 cm high with an effective resolu-

tion of 256 · 1024 corresponding to Dx = 47 lm at the finest level of resolution.

We simulate the lean flame (/ = 0.8) until tf = 12 ms, and the rich flame (/ = 1.2) until tf = 22 ms. For

the cases considered, there are a number of interesting stoichiometry-dependent changes in the chemical

behavior as the vortex interacts with the flame; we focus on two of them. First, in the rich case we observe
a dramatic reduction in CH as the vortex interacts with the flame, similar to what was observed by Nguyen

and Paul [30]. Second, for both equivalence ratios, we observe an enhancement in CH3O as the flame is
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stretched by the vortex. Snapshots of the mole fraction of CH and CH3O for each case are presented in Fig.

5. Our goal is to apply the stochastic particle algorithm to the simulation data to understand the behavior

of these two chemical species.

To analyze how the vortex interaction changes the flame chemistry, we want to compare the behavior of

carbon atoms passing through the stretched portion of the flame to the behavior of carbon atoms passing
through a relatively unperturbed portion of the flame. For this purpose we initialize 400,000 carbon par-

ticles, initially in CH4, at the points labeled L and R in Fig. 4 at initial time. These positions represent

two locations at time t = 0 of fluid that will enter the flame at �8 ms. For each starting location we then

look at the subset of the stochastic paths for particles passing through the flame in a given space-time win-

dow, ignoring those with trajectories not relevant for analyzing CH behavior near the centerline.

We compute reaction pathway diagrams as before for stretched (R) and unperturbed (L) sections of the

flame by tabulating the chemical transformations in the stochastic particle trajectories. The lean case is

shown in Fig. 6 and the rich case is shown in Fig. 7.
Comparing the reaction paths, we find that for the lean case, the interaction with the vortex induces min-

imal changes in the basic carbon chemical pathways, consistent with the behavior of CH observed in Fig. 5.

For the rich case, the vortex interaction leads to a dramatic shift in the chemical pathways. In particular,

the data shows a marked shift away from the CH3 ! CH2(s) pathway combined with an enhancement of

the CH3 ! C2H6 pathway. This preferential shift toward the C2 pathway is the major cause leading to the

reduction in CH.

To explore the shifting of the chemical pathways in more detail, we analyze the reaction events in the

stochastic particle trajectories that create and destroy CH3. In Fig. 8, CH3 pathways are presented for both
the left and right sides of the flame for the rich case. The CH3 chemistry is dominated by a relatively small

number of reactions – four reactions describing the CH4 ! CH3 kinetics and the seven destruction reac-

tions depicted in the figure. (Three of which are also significant in the reverse direction producing CH3.)



Fig. 5. Behavior of CH and CH3O during vortex–flame interaction for / = 0.8 and 1.2.

20%

26
%

15%

17%
29%

13
% 4.6%

HCCO

CH2CO

CH4 CH3

CH2

CO2

CH2CHO

CH3O

HCO

C2H3C2H4C2H5C2H6

CH2O

CH3CHO

CH3OH CH2OH

CH2(S)

COCH

18%

25
%

15%

19%
31%

12
% 4.7%

HCCO

CH2CH2(S)

CO2

CH2OHCH3OH

CH2O HCOCH4 CH3

CH2COCH2CHOCH3CHO

CH CO

C2H3C2H4C2H5C2H6 C2H2

CH3O

2.7%

(L) Left Particles (R) Right Particles

Fig. 6. Carbon reaction path diagrams for vortex–flame interaction, / = 0.8. Here only paths of strength >1% of the largest path,

CH4 ! CH3, are shown. For some paths of interest their weights are shown as a percent of the strongest.

270 J.B. Bell et al. / Journal of Computational Physics 202 (2005) 262–280
The pathways may be distinguished by whether they involve radical species as reaction partners. Those that

involve radical species show a marked relative reduction on the strained side of the flame compared to those

in the unperturbed flame. The remaining reactions, involving recombination or partnering with a stable

chemical species show a corresponding increase. Additional particle statistics confirm that on the strained

side of the flame, the reactions destroying CH3 occur at lower concentrations of the relevant radical species.

From the above analysis, we see that to further explore this shift in chemical pathways, we need to exam-

ine the reduction in the radical pool. Classical stretched flame theory suggests that Lewis number effects,
especially in the mobile H and H2 molecules, are likely to impact the chemistry near the region of intense

flame interaction with the vortex. To explore how the observed behavior is related to flow strain we gen-

erated an ensemble of particle trajectories for H atoms bound originally in fuel methane molecules and re-

leased from the same initial point as the carbon atoms discussed above. For both H and H2, we examine

how far the H-atoms are transported before the molecule reacts. The trajectories show that atomic H exists

on average for less than 4 ls, and is therefore too reactive to exist long enough for significant transport by
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advection or diffusion. The H2 molecules are considerably longer-lived, and behave quite differently. We

find that when H atoms from CH4 first become part of an H2 molecule, that molecule exists on average

for 0.6 ms on the left but 1.3 ms on the right. In Fig. 9 we show pdfs of the total horizontal distance traveled

by these H2 molecules. The symmetric boundary conditions in the computation bias molecules on the left to

move right and molecules on the right to move left, since random-walk steps through the boundary are re-

flected back into the domain. These biases have been removed from the pdf data by keeping track of the

number of steps through the boundary, nb, and if nb is odd, mirroring the particle through the relevant
boundary to obtain a true final position. A dramatic difference is observed for particles on the right in

the strained section of the flame. We observed more than a factor of three difference in mean distance trave-

led horizontally, showing that H2 is transported out of the local flame zone by the vortical flow. The reduc-

tion in H2 in the flame zone modifies the chain-branching reactions leading to a reduction in the available

radical pool.

The behavior of CH3O is more subtle. As shown in the reaction path diagram, the changes in the ob-

served CH3O mole fraction are not caused by shifting of the integrated chemical pathways; the net produc-

tion of CH3O on the right hand side is somewhat reduced in both the rich and the lean flames. The
computed trajectories show that CH3O is created by essentially one reaction, CH3 + HO2 ! CH3O + OH.

There are two reactions that dominate CH3O�s destruction 1
1 R
Rxn 57 : CH3OðþMÞ ! CH2OþHðþMÞ

Rxn 170 : CH3OþO2 ! CH2OþHO2
Comparison of these two destruction reaction shows that most of the CH3O is destroyed by Rxn 57 in both

the right and lean cases. However, CH3O molecules destroyed by Rxn 170 exist on average much longer

than those destroyed by Rxn 57. (The time for which a molecule exists is important because the observed

molar concentration is determined by how much of a molecule is produced and how long it exists before

reacting again.)

To understand the observed ‘‘bloom’’ in CH3O as the vortex interacts with the flame we must examine

how the destruction reactions change on the right hand side as the flame interacts with the vortex. In both
the rich and the lean cases, the relative strengths of the two destruction reactions remains unchanged. How-
eaction numbers are taken from GRI-Mech 3.0 specification of kinetics.
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Fig. 8. Dominant chemistry of CH3 in the / = 1.2 case, determined from stochastic particle analysis. Each pathway is annotated with

the associated reaction partner(s) and strength, normalized to the net number of CH4 ! CH3 events. The red values represent statistics

of particles released on the left, the blue values from particles release on the right. Only paths of strength >5% are shown. Pathways not

involving radical partners are highlighted yellow, and are increased in the side interacting with the vortex over those in the unperturbed

side. All CH3 destruction reactions involving radicals are weaker in the strained flame region, and in particular paths leading to CH

through the CH2(s) molecule are reduced while those leading to the C2 branch through C2H5 and C2H6 are enhanced. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Symmeterized distributions of horizontal H2 migration show how the flowfield strain disrupts local hydrogen chemistry in the

rich flame.
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ever, interaction with the vortex changes the average lifetime of CH3O. For CH3O destroyed by Rxn 57, in

the rich case the average lifetime increases by 30% while for the lean case it increases by 10%. More dra-

matically, for CH3O destroyed by Rxn 170, the lifetime on the right hand side increases by more than 100%

for both the rich and lean flames. This increase in longevity, not a shift in the chemical pathways, is respon-

sible for the enhancement of CH3O during interaction with the vortex. Further examination of the particle
trajectories shows that, on average, Rxn 170 occurs at lower temperatures on the right than on the left for

both equivalence ratios. This occurs because the temperature profile is steepened on the right due to vortex-

induced strain; thus, diffusion transports CH3O into a cooler region on the right than on the left. Since this

reaction is strongly temperature dependent (�T7.6), CH3O particles survive longer on average before

reacting.

Thus, the behavior of the two species, CH and CH3O represent different types of phenomena. In the case

of CH the observed behavior is related to a shift in the observed chemical pathways. For CH3O, the ob-

served behavior arises from a change in the timing of production and destruction of the molecule.

3.3. Laminar diffusion flame

The final example focuses on the nitrogen chemistry in a cylindrically-symmetric laminar diffusion flame.

For this example, the flame is modeled using a reaction mechanism of Glarborg et al. [17]. This mechanism,

which includes detailed nitrogen chemistry, contains 65 species and 447 reactions. The case we consider here

was part of a combined experimental and numerical study of the effect of fuel-bound nitrogen in the form of

NH3 on NOx formation [4,36]. Here we consider only the case with no added NH3. Temperature and NO
mole fraction obtained from the continuum solution are shown in Fig. 10.

An important scientific objective in studying these types of flames is to study the formation of NO. For

the case we are considering the only source of nitrogen is N2 in both the fuel and the oxidizer streams. Be-

cause N2 is a relatively stable molecule, only 26 ppm of NO is formed, so the number of trajectories in

which reactions occur is very small; we are essentially looking for rare events. Although we can examine
Fig. 10. Temperature and NO mole fraction for the laminar nonpremixed flame. The dotted white line is the stoichiometric boundary

between the fuel and air.
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NO chemistry as before by sampling N in N2 molecules entering the domain, we would require a large num-

ber of trajectories to obtain a statistically significant set of reacting trajectories. Alternatively, we can a pri-

ori decide to look only at ‘‘interesting’’ trajectories; i.e., trajectories where N2 reacts. This is done by using

the continuum reaction rates for N2 over the domain to construct a probability distribution that reflects

where N2 will first react. We use one random variable to sample this distribution for points in space at
which to begin the trajectories, and then we use a second random variable to sample the distribution of

N2 reactions at such points for the initiating reactions. This type of procedure is inspired by stochastic mod-

els for studying rare reaction phenomena in biological models originally developed by Gillespie [14,15]. We

simulate 106 trajectories for the N atom, beginning with the initial breakup of N2. With this approach to

sampling rare events, �5% of the paths result in NO, reducing by a factor of about 2000 the total number of

trajectories required to understand those producing the 26 ppm of NO. We use the particle trajectories to

compute a net reaction path diagram for the nitrogen chemistry which is presented in Fig. 11. As in the

steady premixed flame case, we can compute the analogous net reaction graph from the continuum data
and the results show that the nitrogen chemistry as represented by the particles agrees with the analytic rate

integration to within a few percent on all paths.

We now demonstrate that stochastic particles can also recover the spatial structure of the continuum

solution. Assume that we are given a lattice that covers the computational domain. For each cell in the lat-

tice and for each trajectory that crosses that cell, we determine the residence time of N while it is part of an

NO molecule in that cell. If we sum these residence times over an ensemble of trajectories the result is pro-

portional to the molar concentration of NO. In Fig. 12, we show the NO profile, weighted by local radius

(this scaling is necessary since the residence time is in units proportional to moles/lattice cell not moles/vol-
ume). Even for a modest number of particles the residence time provides a reasonable, if somewhat ephem-

eral, view of the concentration profile. As the number of samples is increased, however, the agreement

becomes increasingly good. We also note that better agreement can be obtained with fewer trajectories if

we use a coarser lattice.

These examples show that the stochastic particle approach is able to recover both the chemical and spa-

tial structure of the flame even for NOx chemistry where the net NOx effluent is �26 ppm. As a final illus-

tration of the use to stochastic particles, we examine an issue for these types of flames that is not easily

determined from the continuum solution. To pose the question, we consider the nitrogen reaction path
analysis for this flame presented in Fig. 11. The N in nitrogen oxides leaving the system enters the system

as N2 which is broken into N, NNH, HCN, etc., and eventually exits the domain as either NO, or NO2. The
H2CN

CH2CN

CH3CN

HONO

NNH

NO

NH

NO2

HCN

N2

N HNO

CN

N2O

HCNO

HOCN

NH2

HNCO

NCO

Fig. 11. Reaction path diagram for nitrogen chemistry. Only edges at least 3% of the strongest are shown.



Fig. 12. NO concentration in moles/area comparing 32,000, 128,000 and 1,000,000 particles with the continuum solution.

J.B. Bell et al. / Journal of Computational Physics 202 (2005) 262–280 275
path diagram shows a loop in which nitrogen atoms reside for a time in carbon species. Indeed, the flow

through some carbon species is greater than that out of N2. This indicates that cyano chemistry plays an

important role in the formation of NOx with an N atom possibly recycling through the carbon species mul-
tiple times before exiting the domain in NOx.

To understand the role of this carbon recycling on NOx chemistry we examine the trajectories used to

compute Fig. 11�s nitrogen reaction path diagram and extract the subset of those paths that exit the domain

as NO or NO2. For each of these trajectories, we calculate the number of times the N atom we are tracking

changes from a non-carbon containing species to a carbon species, and refer to this quantity as the number

of cycles for that trajectory. We can then compute a probability distribution for the number of carbon recy-

cling cycles undergone by NO and NOx molecules leaving the system. The resulting data, presented in Fig.

13, are well approximated by the discrete geometric probability distribution
P ðnÞ ¼ kð1� kÞn for k ¼ 0:33
indicating that entering the recycling loop can be modeled as the arrival time for a Bernoulli process.

We can also use the particle trajectories to quantify the spatial structure of the recycling behavior. In Fig.

14 we plot the initial reaction location for each particle that exits the domain as NO or NO2, colored by the
number of times it will cycle through cyano species before leaving. We can see that particles that initially

react on the outer edge of the flame are not affected by carbon recycling. However, considerable carbon

recycling occurs for trajectories initiating on the rich side of the flame sheet, and it becomes increasingly

important as we approach the base of the flame. This provides some quantification of the overall behavior

of the system and allows us to obtain a spatial picture that indicates where carbon chemistry plays an

important role in NOx formation.
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4. Summary and conclusions

We have developed a new diagnostic methodology for analyzing combustion simulations. This approach

is based on tracking atoms through the system using a stochastic particle formulation that models advective

transport, differential diffusion and reactions using the results of a pre-existing solution to the reacting flow
equations. We have demonstrated that the method can recover key properties of the continuum solution

and provides a mechanism for diagnosing the behavior of complex reacting flows. Perhaps one of the most
Fig. 14. Location of initial reaction for exiting NOx particles. Black points mark initial reaction locations for particles that do not

participate in carbon recycling. The remaining points are color-coded to indicate the number of carbon cycles in the particle history

using a rainbow palette ranging from red (=1) to violet (P 12).
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intriguing properties of this approach is that is allows questions about the reactions and transport to be

posed in a natural and straightforward manner. The method has been implemented for multidimensional

time-dependent flows and can directly utilize the hierarchical grid system generated by our block-structured

adaptive reacting flow algorithm. Our long term goal is to use the stochastic particle approach to study

chemical behavior in three-dimensional, time-dependent turbulent combustion.
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Appendix A. Chemical reactions as Markov processes

In a Markov process the probability of transition from one state to another depends only on the current

state. Representing the movements of atoms among molecules as a Markov process must address three is-

sues: large-rate reversible reactions, reaction ambiguities, and molecules with multiple atoms of the same

kind.

A.1. Reversible reactions

The transition probabilities for the chemical Markov process represent reactions most of which are

reversible. The forward and reverse rates either can be treated separately or can be coalesced into a single

net destruction (or creation) rate. Since creation rates do not enter the construction of transition probabil-

ities explicitly, the choice makes a substantial difference in the behavior of our algorithm. In Fig. 15, we

consider the situation of large forward and backward reaction rates that are near equilibrium. If the

destruction probability for species M1 involved the coalesced rate, the net probability of transferring A

from M1 to M2 would be very small, and atoms entering molecule M1 will nearly always transform to
M3. However, in reality, the atom bounces back and forth fromM1 toM2 and is equally likely to transform

to M4 as M3. To capture this behavior, both forward and reverse version of each the reversible reactions

must be taken into account when constructing the destruction probabilities. In this way, it is possible for a

traced atom to make several jumps between host molecules over the time interval Dt since Dtc < Dt. Note

that in opting not to coalesce the forward and reverse rates, our algorithm incurs a more restrictive Dtc.
A∈M0

M1

M3 M4

M2

Fig. 15. Two species (M1 and M2) with rapid forward and backward reactions near equilibrium. If tracked particle A 2M0 enters the

M1 species group, the probability that A will emerge later in the M4 group depends on whether the production rates between M1 and

M2 are coalesced.



CN + NO2 NCO + NO

-O

-O, +C

Rxn 281:

Fig. 16. Example of a potentially ambiguous reaction. The CHEMKIN specification does not indicate whether this reaction simply

exchanges an O atom from NO2 to the CN molecule or if it represents a multi-step exchange event.
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A.2. Reaction ambiguities

There are several subtleties associated with constructing the Markov process from a reaction kinetics

database. A CHEMKIN [24] mechanism file includes very little information about the atomic details of
the reactions. Specifically, there may not be enough information to determine the specific molecule in

the product list to which our trace atom in the reactants has been converted. The most common example

of this situation in the GRI-Mech 3.0 database used in this study occurs when there are at least two reactant

and two product species containing our trace atom, as illustrated in Fig. 16. In this case, we are tracing N

atoms, and will want to map species on the left to species on the right in order to determine the fate of N.

This reaction may involve the transfer of a single O atom, in which case the N in the NO2 molecule becomes

the N in the NO molecule. Alternatively, the reaction may exchange O and C atoms so that the N in the

NO2 becomes the N in the NCO. In rare cases, both options may occur with some finite probability, or the
process may even involve more complex intermediate steps. Unique decomposition of the reaction may

therefore require intimate knowledge of the molecular bond structures involved and that data is not en-

coded in the CHEMKIN file.

In our implementation, we have arbitrarily resolved such ambiguities with a simple set of ‘‘rules’’ to ap-

ply to the reaction decomposition. The rules are motivated by a knowledge of molecular processes in con-

sultation with Glarborg [16]. We summarize the rules as follows:

� Rather than exchange-type processes, we prefer simple shuffling reactions that transfer a single atom or
element group from one base molecule to another.

� We prefer shuffling the smallest group of atoms (in number first, then by atomic weight).

� We avoid the transfer of single carbon atoms, or cases that break C–O bonds.

The rudimentary rules may well be incorrect for some reactions in the GRI-Mech 3.0 mechanism. We

note, however, that the resolution of these special cases has very little impact on the chemical analyses pre-

sented in this paper. The issue is generic to the stochastic particle analysis approach, and new applications

should be approached with care.

A.3. Multiple atoms per molecule

Once the details of the reactions have been determined, the only additional issues concern molecules that

contains more than one atom of element A. If the molecule is symmetric with respect to A, we can assign

probabilities for the destination molecule based on simple counting arguments and a uniform distribution.

This case is illustrated in Fig. 17(a) which considers the behavior of H in the reaction

O + CH4 � OH + CH3. If we assume that this reaction occurs, then there is a 25% chance the H atom will
be shifted to the OH radical and a 75% chance that it will be shifted to CH3. Thus, in defining m, if p is the

probability of the reaction occurring, then we specify that 0.25p is the probability of the transition

CH4 ! OH and 0.75p is the probability of the transition CH4 ! CH3.

When the structure of M is asymmetric with respect to the A atoms, we need to know which position (up

to symmetry) A occupies; and we must augment the definition of the states and the reaction probabilities to



Fig. 17. Examples of reactions involving molecules with several of the atoms being tracked. Example (a) shows a symmetric case

involving H atoms in CH4. Example (b) show an unsymmetrical case involving carbon.
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reflect this location (e.g. to prevent physically impossible transitions). In Fig. 17(b) we show an example of

an asymmetric molecule participating in reactions that illustrate the issues. Here, two carbon-containing

species react to form a single composite molecule which subsequently breaks apart. After the second reac-

tion, we see that the carbon atom originally in the CH2 molecule becomes the carbon atom in CH3; phys-

ically, it cannot be the carbon atom from the CO molecule. For the reaction history to be correct, this

positional information needs to be included in the definition of m. In order to include this information
and preserve the Markov property of m, the two different carbon positions in CH2CO need to be repre-

sented as distinct states with their own transition properties. We note that in the present implementation,

we have not distinguished these states and have used the treatment discussed above for symmetric mole-

cules. For the flames considered here, no reactions involving asymmetric molecules played any substantive

role in the dynamics; however, if more complex fuels were considered this type of effect could become

important.
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